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Abstract. We give a simple criterion for testing a behavior à la Edwards in certain zero-temperature,
ferromagnetic spin-flip dynamics and use it to show that the limiting distributions of those dynamics do
not coincide with the uniform distribution over the blocked configurations of the dynamics. We provide
explicit examples in dimension one and higher.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 64.60.My Metastable phases –
68.43.Mn Adsorption/desorption kinetics – 75.40.Gb Dynamic properties (dynamic susceptibility, spin
waves, spin diffusion, dynamic scaling, etc.)

1 Introduction

In many physical systems the dynamics at low tempera-
ture or high density is so slow that the system is out of
equilibrium at all practical time scales and ordinary ther-
modynamics does not apply. As a consequence, because of
their practical as well as theoretical interest, non-standard
thermodynamics have been proposed to describe out-of-
equilibrium systems.

In the context of granular materials, Edwards proposed
to compute thermodynamic quantities by means of a flat
ensemble average over all the blocked configurations of
grains with prescribed density, leading to a natural def-
inition of configurational temperature (see [1–3]). In the
absence of a derivation from first principles, this approach
has to be tested with specific models and experiments (see,
for example [4], and references therein).

Since its proposal, there have been various attempts to
apply Edwards’ idea to situations far beyond its original
scope, in particular in the context of the slow relaxation
dynamics of glassy materials (see, for example, [5,6]) and
of the tapping of spin systems (see, for example, [7–9]).
(The literature is very vast and we will not try to provide
an exhaustive list of the relevant papers.)

In this note we revisit one of those attempts [10],
namely looking at zero-temperature Ising dynamics, and
give some novel results for two- and higher-dimensional
models. Although the situation considered here and in [10]
is completely different from the original situation consid-
ered by Edwards, it has been extensively investigated by
various authors (see [11] and references therein) as one
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where a behavior à la Edwards might arise. In fact, numer-
ical studies have shown that applying Edwards’ hypothe-
sis provides reasonable predictions for physical quantities,
sometimes giving very good numerical accuracy (see, for
example, [11]).

One version of the so called Edwards’ hypothesis in
the context of zero-temperature dynamics with many ab-
sorbing (or blocked) configurations consists in assuming
that all the absorbing configurations are sampled by the
dynamics with equal weights, which would imply that the
limiting spin distribution under the dynamics is the uni-
form distribution over all the absorbing configurations.
This turns out not to be the case in general, as already
concluded in [10] for certain one-dimensional examples.

In Section 2 we revisit a constrained Glauber dynamics
analyzed in [10], then in Section 3 we present a general
criterion and provide new examples in higher dimension
where the limiting distribution differs from the uniform
one. The main novelty of this note lies in the approach,
which is mathematically rigorous and allows us to treat
models in dimension higher than one, where the methods
of [10] do not easily apply (see the discussion at the end
of [11]).

The models considered here belong to a class of zero-
temperature spin-flip dynamics that have been much stud-
ied in recent years (see, for example [12–14]), in an at-
tempt to understand both the behavior of the dynamics
(e.g., the speed of relaxation) and the properties and dis-
tribution of the absorbing configurations (e.g., percolation
properties). From this point of view, it is interesting to
check the validity of the so called Edwards’ hypothesis
since it gives information about the limiting distribution
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of such models. A slightly longer version of this note with
some more details and a further application of the method
is available online [15].

1.1 FKG inequality and Harris’ theorem

We give here the tools needed to check Edwards’ hypoth-
esis for attractive (see the next paragraph), zero-tempe-
rature Ising dynamics. In the context of an Ising spin
model on a lattice L, we will call increasing an event E
such that its indicator function IE(σ) is non-decreasing
in the number of plus spins present in the configuration
σ = {σx}x∈L, σx = ±1. If E1 and E2 are two increasing
events, the FKG inequality [16–18] states that, roughly
speaking, the occurrence of E2 makes E1 more likely, or
more precisely, the conditional probability of E1 given E2

is larger than or equal to the probability of E1:

P (E1 | E2) ≥ P (E1). (1)

Many interesting distributions satisfy the FKG inequal-
ity (1), among them are product measures and Gibbs mea-
sures (with some restrictions), and in particular the sym-
metric Bernoulli product measure from which the initial
configuration of the constrained Glauber dynamics of Sec-
tion 2 is chosen (corresponding to a spin system prepared
at “infinite” temperature).

We will say that a spin-flip dynamics is attractive if,
for all vertices x of L, the rate for the spin flip σx = −1 →
σx = +1 is non-decreasing in the number of plus spins in
σ (we will consider only symmetric dynamics, so the roles
of plus and minus spins can be interchanged). Stochastic
Ising models with a ferromagnetic interaction are exam-
ples of attractive dynamics. A theorem of Harris [19,20]
states that attractive dynamics preserve the FKG prop-
erty, i.e., if one starts with a measure P0 that satisfies the
FKG inequality and applies to the spin system an attrac-
tive dynamics, the measure Pt describing the spin system
at time t still satisfies the FKG inequality. In particular,
this result can be applied to the constrained Glauber dy-
namics of Section 2 and to the other examples in this note
to deduce that the limiting (as t → ∞) measure P∞ sat-
isfies the FKG inequality.

2 A constrained Glauber dynamics in 1D

The one-dimensional constrained Glauber dynamics stud-
ied in [10] corresponds to a ferromagnetic Ising chain
where the only possible moves, happening with rate 1,
are flips of plus spins surrounded by minus spins or minus
spins surrounded by plus spins:

− + − −→ −−−, + − + −→ + + +. (2)

The blocked configurations (i.e., the absorbing states of
the dynamics) are those where the unsatisfied bonds (i.e.,
bonds between spins of opposite sign) are isolated (see [10]
for more details).

We consider the deep-quench situation, where the sys-
tem is prepared at infinite temperature and the tempera-
ture is then decreased to zero instantaneously. This corre-
sponds to an initial configuration chosen randomly from
a symmetric Bernoulli product measure, i.e., with{

σn(0) = +1 with probability 1/2
σn(0) = −1 with probability 1/2 (3)

where σn(t) is the value of the spin σn at time t.
We call Pt the distribution of the spin configuration
σ(t) = {σn(t)}n∈Z at time t, and denote by P∞ the limit-
ing distribution obtained as t → ∞.

2.1 Checking Edwards’ hypothesis

In [10], P∞ is compared to the uniform distribution Punif

on blocked configurations, corresponding to an ensemble
where all blocked configurations have the same weight,
using exact results on the statistics of the blocked config-
urations reached by the system. The comparison reveals
systematic differences.

Here we confirm those results by rigorously proving
that P∞ �= Punif , but the main goal of this section is to
introduce, via a simple specific example, a general crite-
rion for comparing the limiting distribution P∞ of a spin
system subjected to an attractive dynamics to the uni-
form distribution Punif on the absorbing configurations
of that same dynamics. The general strategy is described
in Section 3, where we also give further applications.

Consider all blocked configurations of the spin chain
such that σ±2 = σ±3 = +1. It is easy to see that such
blocked configurations are of only four different types:

A σ−1 = σ0 = σ1 = +1
B σ−1 = +1, σ0 = σ1 = −1
C σ−1 = σ0 = −1, σ1 = +1
D σ−1 = σ0 = σ1 = −1.

Under the uniform distribution on blocked configuration,
the occurrence of each type has equal probability; there-
fore, conditioned on having σ±2 = σ±3 = +1,

Punif (σ0 = +1 |σ±2 = σ±3 = +1) =
Punif (A |σ±2 = σ±3 = +1) = 1/4. (4)

On the other hand, Harris’ theorem (see Sect. 1.1) implies
that P∞ satisfies the FKG inequality, so that we have

P∞(σ0 = +1 |σ±2 = σ±3 = +1) ≥ P∞(σ0 = +1) = 1/2,
(5)

where the equality follows from the ± symmetry of the
dynamics and the initial distribution. The last two equa-
tions show that P∞ cannot be the uniform distribution
Punif .

3 The general strategy

The strategy we used for the constrained Glauber dynam-
ics of the previous section can be generalized to other
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attractive, symmetric Ising dynamics with locally sta-
ble configurations (later, we will also give an application
where there are no locally stable configurations – see Ex-
ample 4 in Sect. 3.1), with initial configuration chosen
from a symmetric distribution that satisfies the FKG in-
equality (for instance, a product measure or a high tem-
perature Gibbs measure). For simplicity, we restrict our
attention to nearest neighbor models; in this context, by
the existence of locally stable configurations we mean that
there are finite subsets G of the lattice L such that, if
σx(t0) = +1 (−1) ∀x ∈ G, then σx(t) = +1 (−1) ∀x ∈
G, ∀t > t0. When this is the case, we say that the spins
in G are stable and we call G a stable set. If G is a smallest
set with this property (there could be more than one, with
different shapes), we call it a minimal stable set.

Some more notation is needed before we can proceed
with the general strategy and further applications. Given
a subset Λ of L, we call exterior boundary ∂eΛ of Λ the
set of vertices x /∈ Λ that are adjacent to a vertex in Λ,
and interior boundary ∂iΛ of Λ the set of vertices x ∈ Λ
that are adjacent to a vertex not in Λ.

We are now ready to explain the general strategy; in
the next section we will illustrate it with some exam-
ples. Let G1 and G2 be two distinct minimal stable sets
both containing the origin (0 ∈ G1 ∩ G2) and denote by
G = G1 ∪ G2 their union. Let L be a (finite) stable set
such that G ∩ L = ∅ and ∂eG ⊂ L (in words, G is “sur-
rounded” by L). G1, G2 and L should be chosen so that
{G\G1}∪L and {G\G2}∪L are stable sets. Notice that,
since G1 and G2 are minimal stable sets, G\G1 and G\G2

are smaller than any minimal stable set and therefore are
not stable sets.

Now it is easy to convince oneself that, conditioned on
the spins in L all being plus, there are only four possible
types of blocked configurations:

1. All the spins in G are plus.
2. All the spins in G are minus.
3. The spins in G1 are minus and those in G\G1 are plus.
4. The spins in G2 are minus and those in G\G2 are plus.

This implies that, conditioned on all the spins in L be-
ing plus, the uniform distribution on stable configurations
assigns probability 1/4 to the event that the spin at the
origin is plus (corresponding to case 1 above).

On the other hand, if we consider a symmetric, at-
tractive dynamics with initial configuration chosen from a
symmetric Bernoulli product measure, conditioned on the
same event (all the spins in L being plus), the limiting
distribution P∞ must assign probability at least 1/2 to
the event that the spin at the origin is plus, which shows
that P∞ cannot be the uniform distribution.

3.1 Higher dimensional examples

Here we present some examples in dimension higher than
one where we can use the method described above to rule
out the uniform distribution. All we have to do is choose
the sets G1, G2 and L appropriately. We will consider
zero-temperature dynamics such that a spin flips at rate 1

Fig. 1. The increasing event E used in Example 1; σn are the
spins in the lower row Z × {0} and σ′

n those in the upper one
Z × {1}.

if it disagrees with a strict majority of its neighbors and
at rate 0 otherwise. As in the example of Section 2, we will
always start with a Bernoulli symmetric product measure
(see (3)), corresponding to the deep-quench situation. We
note that exact results are usually not available for models
in dimension higher than one, which hampers the appli-
cability of the methods used in [10].

Example 1: Zero-temperature dynamics on the ladder
Z × {0, 1}
The blocked configurations are such that each spin has at
least two neighbors of the same sign; squares are minimal
stable sets. We choose G1 and G2 to be the sets of vertices
of the two squares containing the origin {0} × {0} (the
shaded squares in Fig. 1) and L to be the set of vertices
{±2,±3}× {0, 1}.

Conditioning on the increasing event E = {σ±2 =
σ±3 = σ′

±2 = σ′
±3 = +1} (see Fig. 1), it is easy to see that

Punif (σ0 = +1 | E) = 1/4, because the fact that σ0 = +1
implies that σ′

0 = σ±1 = σ′
±1 = +1, while there are three

possible local blocked configurations with σ0 = −1. On
the other hand, Punif (σ0 = +1) = 1/2 by symmetry, so
that Punif does not satisfy the FKG inequality.

Example 2: Zero-temperature dynamics on the hexagonal
lattice

The blocked configurations are again such that each spin
has at least two neighbors of the same sign; hexagons are
minimal stable sets. Let Λ = G1 ∪ G2 ∪L = G ∪L be the
set of vertices of the portion of hexagonal lattice shown
in Figure 2, where G1 and G2 are the sets of vertices of
the two shaded hexagons containing the origin and ∂eG ⊂
L = Λ \ G = ∂iΛ.

Conditioning on the increasing event E that all the
spins in L = ∂iΛ are +1, it is easy to see that
Punif (σ0 = +1 | E) = 1/4, because the fact that σ0 = +1
implies that σy = +1 for all y ∈ G, while there are three
possible local blocked configurations with σ0 = −1. On
the other hand, Punif (σ0 = +1) = 1/2 by symmetry, so
that Punif does not satisfy the FKG inequality.

Example 3: Zero-temperature dynamics on Z
d

For simplicity, we consider the two-dimensional case d = 2,
but the same reasoning works for all d ≥ 2. In two dimen-
sions the blocked configurations are again such that each
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Fig. 2. The increasing event E used in Example 2. As indi-
cated, the vertices of the interior boundary ∂iΛ of Λ all have
spin +1.

Fig. 3. The increasing event E used in Example 3. As indi-
cated, the vertices of the interior boundary ∂iΛ of Λ all have
spin +1.

spin has at least two neighbors of the same sign; squares
are minimal stable sets. Let Λ = G1 ∪ G2 ∪ L = G ∪ L
be the set of vertices of the portion of square lattice
shown in Figure 3, where G1 and G2 are the sets of ver-
tices of the two shaded squares containing the origin and
∂eG ⊂ L = Λ \ G = ∂iΛ.

Conditioning on the increasing event E that all the
spins in L = ∂iΛ are +1, it is easy to see that Punif (σ0 =
+1 | E) = 1/4, because the fact that σ0 = +1 implies that
σy = +1 for all y ∈ G, while there are three possible local
blocked configurations with σ0 = −1. On the other hand,
Punif (σ0 = +1) = 1/2 by symmetry, so that Punif does
not satisfy the FKG inequality.

Example 4: Zero-temperature dynamics on the Cayley
tree of degree 3

This last example is interesting because, contrary to all
the previous ones, there are no locally stable configura-
tions (the only stable structures are doubly-infinite plus
or minus paths). Nonetheless, the criterion described in
this note can still be used.

With reference to Figure 4, conditioning on the
increasing event E that σx1 = σx2 = σx3 = +1

Fig. 4. A portion of the Cayley tree of degree three.

and x1, x2, x3 belong to doubly-infinite +1 paths
that do not contain y1, y2, y3, it is easy to see
that, while Punif (σ0 = +1) = 1/2 by symmetry,
Punif (σ0 = +1 | E) = 1/5, because if σ0 = +1, then
σy1 , σy2 and σy3 are all forced to be +1. Therefore, once
again Punif does not satisfy the FKG inequality.

4 Conclusions

We studied the relevance of the so called Edwards’ hy-
pothesis for certain zero-temperature spin-flip dynamics
of ferromagnetic Ising models with blocked configurations.
We first revisited a one-dimensional model studied in [10]
and then presented new results concerning various higher-
dimensional models. Although the models analyzed here
are very far from the situations considered by Edwards
and co-authors and for which the so called Edwards’ hy-
pothesis was proposed, they belong to a class of models
where such a hypothesis could a priory hold. Recently,
various authors have extensively investigated models in
this class in an attempt to settle this problem (for a list
of references and a nice review, see [11]). In all of the ex-
amples considered in this note, we show that the limiting
distribution of the spin-flip dynamics is not the uniform
distribution over blocked configurations, ruling out what
in this context would appear to be a natural version of the
so called Edwards’ hypothesis.

Our conclusions are in line with those of several pre-
vious studies. Our approach, however, is new because it
gives a criterion for testing a behavior à la Edwards which
is simple and general (within the class of ferromagnetic
models considered), and which allows to easily treat mod-
els in dimension higher than one. Another advantage of
the method presented here is the fact that it is mathe-
matically rigorous and thus, when applicable, it can rule
out Edwards’ hypothesis with absolute certainty.

The author thanks Frank den Hollander, Marco Isopi, and an
anonymous referee for useful comments and acknowledges the
support of a Marie Curie Intra-European Fellowship (contract
MEIF-CT-2003-500740).
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